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Abstract--In favourable circumstances, seismic reflection data can give an unrivalled view of faulted rocks in the 
sub-surface, imaging features down to the seismic resolution (typically 20-30 m). The lack of finer detail can, in 
part, be addressed by analysing well cores through the same rock volume. Samples of fault populations from such 
data often exhibit power-law size distributions where 'fault size' can be trace-length or fault-displacement. 
Analysis of a synthetic fractal model (the 'fragmentation model') demonstrates that changing the dimension of 
the sampling domain (e.g. volume to plane, plane to line) changes the power-law exponent of the sample's size 
distribution. The synthetic model also suggests how best to treat faults that extend out of the sample area, and 
illustrates potential problems in comparing samples from very different scales (e.g. regional and detailed 
mapping). 

Analysis of a variety of interpreted seismic-reflection data sets has provided a range of power-law exponents 
for different sample types: 

(i) fault-trace lengths (two-dimensional samples): - I. 1 to -2.0;  
(ii) fault-trace maximum displacements (two-dimensional sample): - 1.0 to - 1.5; 
(iii) 'arbitrary' displacements (one-dimensional sample): -0.5 to -1.0. 

Fault-trace lengths are very sensitive to truncation (resolution) effects, and tip regions should be re-assessed 
using displacement gradients. Maximum displacements, and displacements obtained by line-sampling, are much 
more robust attributes. Well data are useful in constraining the extrapolation of populations to smaller scales. 
Fault populations scale differently than earthquake populations, because the latter represent only the instan- 
taneous deformation, whereas fault populations represent the deformation accrued over geological time. A 
valuable data set to clarify these relationships would be a true three-dimensional sample of faults in an actively- 
deforming area. 

INTRODUCTION 

In recent years there has been considerable interest in 
the scaling properties of faults and fault populations. A 
commonly-observed characteristic of many sampled 
fault populations is that the size-frequency distribution 
is described by a power-law. Denoting the 'size' of a fault 
by S (e.g. its length or maximum displacement), the 
number N of faults having a size greater than or equal to 
S is given by: 

N = aS - ° .  (1) 

The variable a is a measure of the size of the sample, and 
the power-law exponent D is often referred to as the 
fractal dimension of the population. Larger values of D 
imply a greater proportion of smaller faults in the 
population. 

The results of this work have been applied in several 
distinct but related areas. First, the scaling properties 
have been used to constrain and test models of fault 
growth (e.g. Walsh & Watterson 1987, 1992, Cowie & 
Scholz 1992a,b). Second, the properties of the fault 
population have been used to make predictions about 
the overall brittle strain in a region (e.g. Scholz & Cowie 
1990, Walsh et al. 1991, Jackson & Sanderson 1992, 
Marrett & Allmendinger 1992). Third, observations of a 
restricted part of a fault population have been extrapo- 

lated to predict the numbers of unobserved faults in the 
same area, in order to constrain their likely impact on 
hydrocarbon production (e.g. Heifer & Bevan 1990, 
Yielding et al. 1992, Gauthier & Lake 1993). A critical 
step in the latter two areas (i.e. strain summation and 
prediction of small-scale faulting) is the deduction of the 
fault population in the three-dimensional rock volume 
from observations made on cross-sections or maps. 
Marrett & Allmendinger (1991) showed that this 'sam- 
pling domain' effect can be accounted for, provided that 
the fault population is governed by power laws and the 
displacement-length relationship is also known. 

A significant proportion of recent fault-population 
observations has been derived from interpretation of oil 
industry sub-surface data, i.e. seismic reflection surveys 
and wells. Traditionally seismic data has been 'two- 
dimensional', comprising a grid of shot-lines each of 
which is essentially a vertical cross-section. The last 
decade has seen an explosive development in 'three- 
dimensional' seismic acquisition, where shot-lines are 
sufficiently close (e.g. 10-20 m) that the data can be 
regarded as being a data volume rather than a cross- 
section. Such continuous sampling of many cubic kilo- 
metres of rock generates significantly improved imaging 
of sub-surface structure (e.g. Dalley et al. 1989), and 
indeed generally provides a better overall structural 
picture than could be obtained by onshore surface map- 
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Fig. I. Block diagram of a faulted rock volume. A three-dimensional 
sample of this fault population would require counting of all the faults 
in the volume. In practice, interpretation of sub-surface data typically 
provides a suite of cross-sections and a suite of 'horizon maps'. 
Counting fault offsets on one horizon on a cross-section constitutes a 
one-dimensional sample of the fault population. Counting fault traces 
on a one horizon map (e.g. upper surface of block) constitutes a two- 

dimensional sample of the fault population. 

population would have to be interpreted and measured 
throughout the three-dimensional rock volume covered 
by the data set. To  our knowledge, such analysis has not 
been performed,  since it would be much more time- 
consuming than the degree of subsurface mapping 
usually required commercially. In practice then, we use 
fault maps (the intersection of the faults with a sample 
plane) or line samples (the fault offsets seen at one 
horizon on a cross-section). 

It is important to understand the effects of these 
sampling procedures on real data distributions. A good 
way to do this is to use an idealized distribution to 
explore sampling strategies relevant to the kind of fault- 
population samples that are available in practice. The 
next section of this contribution uses a fractal geometri- 
cal model (which has a number of properties in common 
with real fault systems) to illustrate: 

(i) the difference between sampling domains (i.e. 
volume vs maps vs line); 

(ii) the effect of incompletely-sampled faults; and 
(iii) a possible difficulty in comparing samples at 

different scales (e.g. regional and detailed mapping). 
These illustrations provide a framework within which 
the real fault samples of the subsequent sections can be 
considered. 

ping. The unavoidable drawback, however, is the reso- 
lution of the seismic acquisition technique. At depths of 
3 km the seismic resolution is typically 30 m (although in 
favourable circumstances may be as low as 10 m): fault 
offsets less than this are essentially invisible on seismic 
reflection data. Wells provide the opportunity to sample 
faults in the sub-surface at a much finer scale, particu- 
larly if cores are recovered. However ,  the width of the 
core barrel (typically ca  10 cm) imposes an upper limit 
on the scale of information that can be obtained. Inter- 
polation of the fault population across this 'data gap' 
must be performed carefully, since wells and seismic 
reflection data may represent different sampling 
domains. 

The principal objective of this contribution is to re- 
view a number of examples of fault-population samples 
obtained from sub-surface data. Interpretation of a 
seismic data set typically involves the 'picking' or map- 
ping of a number of stratigraphic reflections (horizons) 
at different levels within the subsurface. The 'results' of 
interpretation in an area of faulting are therefore: 

(i) a suite of cross-sections (seismic sections) on which 
fault offsets (apparent throw) can be measured; 

(ii) a suite of structure maps, showing fault traces at 
each horizon: for each trace a trace-length and a maxi- 
mum displacement can be measured. 
These two aspects of the interpretation correspond, 
respectively, to one- and two-dimensional samples of 
the fault population (see Fig. 1). To be characterized 
completely (a ' three-dimensional sample'),  the fault 

SAMPLING OF A THREE-DIMENSIONAL 
FRACTAL MODEL 

The model that we use to examine sampling strategies 
is the 'fragmentation model '  of Sammis e t  al .  (1987) (Fig. 
2). This comprises a self-similar array of cubes that has a 
fractal dimension of 2.58, i.e. the cumulative frequency 
distribution of the cube sizes (and bounding surfaces) is 
controlled by a power law with exponent  -2 .58:  

N = aL -2"58, (2) 

Fig. 2. The fragmentation model of Sammis et al. (1987). The cubes 
comprise a population with a fractal dimension of 2.58, i.e. N = 
aL -258, where N is the number of cubes having a size greater than or 
equal to L. The planes bounding the cubes have the same distribution. 
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Fig. 3. Cumulative frequency distribution for line lengths (arbitrary 
units) sampled on one face of the model in Fig. 2. This is analogous to a 
map sample of fault planes. The data follow the power law N - L- 1.ss. 
Note that this exponent differs by 1 from the exponent for the 

population of planes in the volume (Fig. 2). 

where N is the number of objects having a size greater 
than or equal to L. Alternatively, 

log N -- (log a) - 2.58(log L). (3) 

Sammis et al. (1987) showed that some fault gouges are 
statistically identical to this model, in that the distri- 
bution of particle sizes is controlled by the same power 
law. They proposed a mechanism whereby such a distri- 
bution can arise from repeated tensile splitting of grains. 
Whilst we would not necessarily expect the same mech- 
anism to apply to the growth of a fault population, the 
model is a useful analogue for fault-length populations 
because: 

(a) it is three-dimensional and yet simple; 
(b) it contains a population of planes whose frequency 

distribution, like faults, is power-law controlled; 
(c) the spacing distribution of the planes is controlled 

by the same power law, and this is possibly true of faults 
(e.g. Gillespie et al. 1993). 

These similarities between the fragmentation model 
and real faults are apparent to some extent by visual 
comparison of one face of the model with a fault map: 
both exhibit significant clustering of lines/faults and 
corresponding areas where lines/faults are absent. The 
following examples explore the properties of the popu- 
lation of lines on one face of the model: This is a two- 
dimensional sample of the population of planes in the 
volume, and is analogous to the population of fault 
traces on a map. 

Figure 3 is a cumulative frequency diagram of the 
'fault' lengths on one face. Using log-log axes, the 
sample plots as a straight line of slope -1.58, indicating 
that the cumulative frequency is controlled by a power 
law with exponent -1.58. Note that this is exactly 1 
greater than the exponent for the population of planes in 
the volume. This is a general property of isotropic fractal 

sets (Mandelbrot 1982), i.e. changing the sampling 
domain by 1 (e.g. from three to two dimensions) changes 
the measured fractal dimension by 1. There is a smaller 
proportion of small 'faults' represented on the sample 
plane than in the volume because the probability of a 
'fault' plane being cut by the sample plane is directly 
proportional to the 'fault' size. If we can measure the 
population on a sample plane, and the population is 
isotropic, then the population distribution in the volume 
can be obtained simply by decreasing the exponent by 1; 
this relationship was described by Marrett & Allmend- 
inger (1991). 

The data distribution in Fig. 3 is slightly curved for the 
longest 'faults' because the sample area is physically 
bounded by the edges of the model. This 'censoring' or 
'finite range' effect is explored further in Fig. 4, where a 
square sample area is placed randomly within the con- 
fines of the model. Figure 4 shows three cumulative 
frequency curves. The central curve comprises lengths 
for all of the faults within the sample area: for those 
faults that extend beyond the sample area boundaries 
the measured length is that part which lies within the 
sample area. Although a little irregular, this curve gives 
a good approximation to the 'correct' slope of -1.58. 
The left-hand curve omits all length measurements 
where only part of the fault is within the sample area, 
and has a rounded form (long faults are under- 
represented). Conversely, for the right-hand curve the 
complete length of the part-faults has been measured 
(i.e. including the extension out of the sample square), 
and here the longest faults are over-represented. These 
results suggest that the most reliable and simplest way of 
dealing with faults that extend out of a sample area is to 
include that part which can be measured, rather than 
discarding them completely. 

Real observations of faults are often restricted, for 
practical reasons of sampling, to a limited range of sizes 
(typically one or two orders of magnitude). In order to 
characterize the population over a wide scale range, it is 
therefore common to compare a number of samples 
from different scales on one cumulative frequency graph 
(e.g. Heifer & Bevan 1990, Yielding et al. 1992, Scholz et 
al. 1993). This process is simulated in Fig. 5. On the 
fractal model, successively smaller squares indicate a 
sequence of sample areas; these might be thought of as 
regional mapping and detailed exposure mapping, for 
example. On the graph, cumulative frequencies are 
normalized per unit area (i.e. cumulative fault density) 
in order to combine the samples into one population. 
Each individual sample accurately reflects the true 
population slope of -1.58, but the overall trend of the 
combined data has a slope of -2.00. This latter slope has 
nothing to do with the fault population but is simply the 
dimension of the sampling domain. Successive sample 
lines on the graph are offset from one another because 
smaller sample squares are never positioned in areas 
that have no faults at all: therefore the normalized fault 
density must be higher in the smaller sample areas. The 
slope of - 2  arises in the following way. In moving from 
one sample to the next, the length of the sample area 
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Fig. 4. The effect of sample censoring on 'fault' length distributions. The sample area is shown as a dashed outline on the 
fractal figure: many of the faults extend out of the sample area. Three different samples are plotted on the graph. The central 
line represents all faults in the sample area; for those that extend beyond the sample area the length measured is that part 
that lies within the area. For the left-hand curve, faults that extend out of the area are omitted from the sample. For the 
right-hand curve, the true length of those faults was measured, i.e. including the part outside the sample square. Note that 

the 'best' sample (i.e. the line which best approximates a slope of -1.58) is the one that includes part-faults. 
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Fig. 5. Comparison of fault sampling at different scales. The diagonally-ruled and stippled squares and black dot indicate 
successively smaller sample areas on the fractal model, giving rise to successive samples on the graph. Each individual 
sample accurately reflects the population exponent of -1.58. However the samples are offset from one another on the plot 
because the average fault density is higher in the smaller sample areas (large unfaulted areas are not present at smaller 
scales). The overall slope of the combined sample points is -2 .0 ,  which simply reflects the dimension of the sample plane. 

might change by a factor s and so does the length of the 
longest fault in the sample. However the area of the 
sample changes by s 2 and so the fault density at the 
largest sampled fault size (n = 1) will change by s 2. 
Hence between samples the change in fault density 
varies as the square of the fault length. This biasing of 
the densities in successive sub-areas was also recognized 
by Sammis et al. (1987) in their study of fault gouge (see 
their appendix 1). A similar effect is likely with fault 
maps at different scales, because a detailed fault map 
will generally be at a locality with more faulting rather 
than a locality where fault density is low. 

Figure 6 shows the effect of another change in the 
sampling domain, this time to line (one-dimensional) 
sampling. Five arbitrarily-placed sample lines have been 
drawn on the fractal model, and 'fault-trace lengths' 
have been measured for all lines intersecting each 
sample line. This procedure is analogous to measuring 
the lengths of faults intersected by a well (though in 

practice this would not be possible). The resultant cumu- 
lative frequency plots show significant scatter depending 
upon the exact position of the sample line through the 
model, but they cluster around a slope of -0.58. Once 
again a change of 1 in the sample slope reflects a change 
of 1 in the dimension of the sample domain. There is a 
smaller proportion of small faults represented on the 
sample line than on the plane because the probability of 
a fault trace being cut by the sample line is directly 
proportional to its length. 

The preceding examples illustrate a number of points 
relevant to sampling of faults: 

(i) a cumulative frequency distribution for fault-trace 
lengths on a map gives an apparent fractal dimension 
that differs by 1 from the fractal dimension of planes in 
the volume (for an isotropic population); 

(ii) an equivalent sample for a line (a well) gives an 
apparent fractal dimension that differs by 2 from that of 
the fault planes; 
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Fig. 6. Line sampling of the fractal model. Five lines are arbitrarily located on the model, and the data curves on the graph 
show the length distribution for all faults cut by each line. Sample slopes show considerable scatter depending on precise 
sample-line location, but they are clustered about a slope of -0.58 (denoted by dashed lines). Note that this slope differs by 

1 from that obtained by two-dimensional sampling (-1.58) and by 2 from that of the three-dimensional model (-2.58). 

(iii) where fault traces extend out of the sample area, 
it is better to include these part-lengths rather than 
discard them; 

(iv) care should be taken when comparing samples 
from different scales of interpretation, because detailed 
maps are often from those areas where faulting is most 
intense. 

The next section examines examples of real fault 
populations and discusses them in the light of the model 
sampling described above. 

FAULT POPULATIONS FROM SUB-SURFACE 
DATA 

The samples described in this section include new and 
previously published examples derived from interpre- 
tation of seismic data sets, together with supporting well 
cores. Two-dimensional samples (from maps) comprise 
measurements of fault-trace lengths and fault-trace 
maximum displacements; cross plots of these data are 
also useful in defining fault scaling properties. One- 
dimensional (line) samples comprise measurements of 
fault displacement on seismic lines. 

Fault-trace lengths 

Figure 7 shows three examples of fault-length samples 
derived from interpretations of North Sea three- 
dimensional seismic reflection data sets. Fault-trace 
lengths have been extracted from horizon maps and 
therefore these are two-dimensional samples. The long- 
est fault trace represented varies from ca 4 km in the 
smallest data set (ca 50 faults) to ca 25 km in the largest 
data set (nearly 300 faults). The smallest and largest data 
sets are from Jurassic horizons affected by end-Jurassic 
extension in the northern North Sea; the third is from a 
Palaeozoic interval affected by two or more episodes of 
Mesozoic extension. The smallest data set barely covers 
one order of magnitude of fault length, and its cumulat- 
ive frequency curve has an irregular form; this sample is 

1000 

100 
t - -  

E 10 

1 . . . . . . . .  I . . . . . . . .  
loo looo loooo looooo 

Fault tength (m) 

Fig. 7. Examples of fault-trace length samples derived from seismic 
interpretations of North Sea fields. The left-hand data set is small, has 
restricted range, and has an irregular form. The two larger data sets 
( A I  and F1 of Table 1) both exhibit a gently curved form because of 

resolution effects (see Figs. 8 and 9). 

too small to be a reliable guide to the actual fault 
population. The larger two samples display a more 
regular data distribution, but both are curved rather 
than straight as would be expected for a power law. 
Heifer & Bevan (1990) explained this as a degradation 
of an underlying power law because of the limited 
resolution of the seismic data. The tip regions of faults 
are not detected by the seismic interpreter because the 
fault throw has dropped below the seismic resolution 
(typically 30 m), and therefore the mapped fault length 
is always an underestimate. This effect is proportion- 
ately greater for smaller faults because a larger fraction 
of their length has a throw below resolution. Hence the 
real population curve becomes shifted progressively to 
the left for smaller fault lengths. 

A corrected population curve can be retrieved from 
such a sample if the tip regions can be reconstructed. 
This can be done if the lateral displacement gradient is 
simple. Recent models of fault growth (e.g. Walsh & 
Watterson 1987, Scholz et al. 1993) suggest a 'bell- 
shaped' displacement profile on isolated fault surfaces; 
to a first approximation the displacement gradient in the 
tip region is linear. Figure 8 shows an example of a 
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Fig. 8. Example of length truncation for a small fault. Display shows a vertical strike projection of interpreted horizon 
cutoffs on part of one fault. The fault throw is shown at 50 m intervals along the fault: at this horizon the maximum throw is 
at the left end of the diagram. At the interpreted end of the fault the throw appears to drop suddenly from 33 to 16 m and 
then to zero. The reading of 16 m is below seismic resolution (30 m) and is unreliable. The displacement gradient suggests 
that this fault may extend another 350 m beyond the mapped end; this end section was not interpreted because the throw is 

below the seismic resolution. 

vertical strike projection of part of a small fault from the 
largest data set of Fig. 7. The footwall and hangingwall 
cutoffs of one mapped horizon are shown, together with 
interpreted throw values at 50 m intervals along the 
fault; the throw maximum at this horizon is at the left 
end of the diagram. At the mapped fault tip the inter- 
preted fault throw drops abruptly from 33 to 16 m, 
before no longer being resolved. The last throw value 
(16 m) is unreliable because it is less than the seismic 
resolution in this data set (20-30 m). Extrapolation of 
the observed throw gradient along the length of the 
fault, however, would suggest that this fault probably 
extends for a few hundred metres beyond the inter- 
preted tip. This unresolved tip region of the fault is likely 
to be between 250 and 500 m in length (depending upon 
how much of the observed fault is used in the extrapo- 
lation); 350 m would be a fair estimate. Re-interpreting 
all the faults and extrapolating their tips in this way 
allows a corrected data curve to be plotted, as in Fig. 9. 
This curve is much straighter than the raw data curve, 
and gives a power-law exponent of -1.37. 

If all the faults have the same displacement gradient 
then the unresolved tip regions will all be the same 
length (for a given resolution), and this calculated length 
can potentially be used as a short-cut to a corrected 
length sample. This is illustrated by the right-hand curve 
in Fig. 9, where 700 m has simply been added to all the 
raw fault lengths (350 m at each end). Further steepen- 
ing of the data curve is now apparent, with a best-fit 
slope of -1.59. However, this is likely to be an over- 
correction because a proportion of the faults link onto 
other faults rather than ending at tips. 

For a total of 10 data sets for which we have extracted 
trace-length samples, the best-fit slopes (power-law ex- 
ponents) lie in the range - 1.18 to -2.04 (see Table 1 and 
Fig. 10a). Six of these lie in the centre of the range, at 
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Fig. 9. Correction of raw trace-length data for resolution effects. The 
left-hand curve is the raw data (largest data set of Fig. 7, A1 in Table 
1). The central curve represents lengths that have been individually 
corrected by analysis of displacement gradients, as in Fig. 8. The right- 
hand curve was obtained by simply adding a nominal tip length (350 m 
at each end) to all faults in the raw sample. Note the straightening and 

steepening of the curves when these corrections are applied. 

-1.35 to -1.6. The two largest values (1.87 and 2.04 
from data sets F1 and F2) are from an area of the U.K. 
Continental Shelf that has experienced at least two 
episodes of extension, whereas all other samples reflect 
a single episode of faulting (late Jurassic faulting affect- 
ing Jurassic horizons). A larger exponent implies a 
greater number of small (short) faults for every large 
(long) fault. It is tempting to suggest that further strain 
(reactivation) in an area of existing faults has required 
the growth of large numbers of shorter faults, to accom- 
modate space problems around existing structures that 
might not be of optimum orientation for the new exten- 
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Table 1. Cumulative frequency exponents for fault-trace lengths and 
fault-trace maximum displacements, derived from mapped horizons in 
seismic reflection data sets. Data sets A,  B, C, etc.,  indicate different 
seismic surveys; numbers (e.g. C1, C2, C3) indicate different strati- 
graphic horizons interpreted on the same survey. Samples F1 and F2 
are from Palaeozoic intervals on part of the U.K.  Continental Shelf 
that has undergone two or more episodes of extension. All other 
samples are from Jurassic horizons affected by end-Jurassic extension. 

Survey D is located within survey E 

Trace Maximum 
length displacement 

Data set exponent exponent Ratio L I D  

A1 1.37 1.34 1.02 
A2 1.42 1.25 1.14 
B 1.5 1.45 1.03 
C1 1.43 1.03 1.39 
C2 1.49 1.29 1.16 
C3 1.35 1.1 1.23 
D1 1.18 - -  - -  
D2 - -  1.42 - -  
D3 - -  1.25 - -  
E 1.75 1.48 1.18 
F1 2.04 0.96 2.13 
F2 1.87 1.04 1.8 
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2.2 

sion. Further data from a variety of settings are required s - 
to test this suggestion. 

The overall range of values for trace-length exponents 
in Fig. 10(a) is similar to published values obtained by 4 -- 
field mapping as well as seismic-reflection mapping. For m 
example, Okubo & Aki (1987) found a fractal dimension 
of about 1.3 for mapped fault traces in the San Andreas ~ 3 -- 
Fault System. Watterson et al. (1996) found values of -o 
1.36-1.87 for fault traces in a compilation of U.K. "5 
coalfield maps, and Villemin et al. (1995) reported an ~ 2 -- 
average value of 1.4 for fault traces in the Lorraine Coal E= 
Basin. Scholz et al. (1993) reported a value of 1.3 for z 
mapped fault traces in the Volcanic Tableland of eastern 1 - 
California. Heffer & Bevan (1990) suggested that a 
cumulative frequency exponent of ca 2.0 is consistent 
with many seismic reflection and map data sets. Gau- 
thier & Lake (1993) found values of 1.10-1.69 from 
analysis of a North Sea data set. Barton (1995) analysed 
a variety of rock pavements and found fractal dimen- 
sions in the range 1.32-1.70. 

In order to increase the size range of a sample, and 
thereby better constrain the population parameters, we 2.2 
can attempt to combine mapping from different scales of 
seismic survey. This is done in Fig. 11, using an extensive 2.0 -- 
two-dimensional seismic survey (covering 1500 km 2) 
and a three-dimensional survey that covers a 220 km 2 E o 

1 o8 
sub-area within the two-dimensional survey. The = o 
samples in Fig. 11 come from the same stratigraphic ~ 1.6 
level, a Jurassic horizon cut by end-Jurassic faulting. 
However, the two data sets do not obviously form a ~ 1.4 
continuous curve; their slopes appear different and the -~ 
fault density is higher in the sub-area. This is perhaps not ~ 1.2 -- 
surprising since the three-dimensional survey was shot 
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Fig. 11. Combination of fault-length samples at different scales of 
seismic mapping in the North Sea. The lower curve represents data 
from one horizon map from a large two-dimensional survey (1500 km 2) 
(data set E in Table 1, from Yielding et al. 1992). The upper curve 
represents data from the same horizon, mapped on a three- 
dimensional survey covering a 220 km 2 sub-area within the larger 
survey (data set D1 in Table 1). Fault density is higher in the sub-area 

and it is not clear how to relate the two samples, el. Fig. 5. 

to resolve the details in an area of more intense faulting. 
(The seismic resolution in the two-dimensional data set 
is about 20 ms (30 m) whereas that in the three- 
dimensional data set is about 10 ms (15 m).) The form of 
the data curves is similar to those in the model sampling 
of Fig. 5 and illustrates the difficulty of combining data 
sets even when from the same area. Sub-areas mapped 
in detail are rarely representative of the whole: they are 
usually mapped in detail because they are more com- 
plex, i.e. they have higher fault densities. A possible 
additional complexity in the samples in Fig. 11 concerns 
the longest fault-traces; faults with length > 10 km are 
likely to cut the entire seismogenic layer and therefore 
the population is no longer isotropic in three dimen- 
sions. 

One potential way of obtaining a more representative 
view of smaller-scale faulting is to use well core data. In 
finely-laminated sedimentary rocks, small faults and 
fractures can often be readily identified, though the size 
of the core (typically ca 10 cm) places a limit on the 
maximum size of shear offset or fracture length that can 
be measured. If the fractures in a well core can be 
reasonably shown to be coeval with faults seen on 
seismic reflection data, then fault densities measured in 
core should be a useful constraint on the extrapolation of 
cumulative frequency relationships inferred from the 
seismic data. If a number of wells are available in a 
particular survey area, then sampling bias towards areas 
of locally-high fault density is likely to be avoided. Fault 
lengths are not directly measurable in core, since the 
majority of them extend beyond the limits of the core 
slab. However, the proportion of fault terminations can 
be used to estimate the mean fault length sampled by the 
core. A large proportion of terminations implies that the 
mean fault length is not much greater than the core 
width; conversely, a small proportion of fault termina- 
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Fig. 12. Combination of fault-length data from the seismic and well 
scales in the same field in the North Sea. The seismic-scale measure- 
ments represent a reservoir horizon mapped on three-dimensional 
seismic data (data set B in Table 1). The core measurements are from 
the same reservoir layer, in a total of 13 wells scattered through the 
mapped area. The fault densities in core are derived from linear fault 
densities using the mean fault lengths calculated from the proportion 
of fracture terminations seen in the core slab. The seismically-mapped 
faults and core fractures are believed to be coeval because they are 
both restricted to pre-Cretaceous rocks and have similar azimuth 
distributions (see Needham et al. 1996). Although the well data show 
almost 2 orders of magnitude range in fault density, they help to 
constrain extrapolation of the population observed on seismic data. 

tions implies that the mean fault length is significantly 
greater than the core width. Dividing the mean fault 
length into the linear fault density gives an estimate of 
the areal fault density, for fault lengths greater than or 
equal to the core diameter (see also Sassi et  al. 1992). 

Well data collected in this way are displayed on Fig. 
12. Over 2 km of core from a Jurassic reservoir in 13 
wells in one North Sea field have been analysed to 
provide estimates of areal fault density at a scale of 10 cm 
fault length. These estimates vary by almost 2 orders of 
magnitude. At the scale of a well, the fault network is 
clearly very heterogeneous, with some wells being 
highly faulted and others having very few fractures. 
Nevertheless, the well data do constrain extrapolation of 
the seismically-mapped fault lengths (from a three- 
dimensional survey of the same field), which are 3-5 
orders of magnitude longer than the core width. For the 
data set shown, a population exponent of ca -1.5 would 
be consistent with both the well and seismic data; this 
estimate is more reliable than if seismic data alone had 
been used. Preliminary estimates of fault-length popu- 
lations using core and seismic data in this way (Yielding 
e ta l .  1992) had suggested an exponent of -2 ,  but this has 
not been borne out by more extensive data shown in Fig. 
12. 

Plots such as Fig. 12 can be used as a guide to the likely 
numbers of faults at the intermediate size range, by 
using the estimated power-law trend (see Needham et  al. 

1996). It is possible, of course, that the mapped and 
core-scale faults are not related, and that extrapolation 
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Fig. 13. Examples of maximum-displacement samples for fault traces 
mapped on seismic data. Both data sets (A1 and A2 in Table 1) show a 
good power-law form above the limit of seismic resolution (ca 10 and 

25 m respectively). 

from the mapped sample to the core sample is fortui- 
tous. However, examples of detailed mapping at the 
intermediate scale in other areas (e.g. Scholz et al. 1993, 
Watterson et al. 1996) also show power-law behaviour. 
The simplest interpretation of these observations is that 
power-law behaviour is applicable across the range of 
scales. 

Fault-trace maximum displacements 

Examples of maximum vertical displacements meas- 
ured on fault traces in North Sea fields are shown in Fig. 
13. (In terms of sampling domain, these are two- 
dimensional samples of the fault displacement.) The 
maximum displacement is a relatively robust attribute 
and does not suffer from resolution problems in the 
manner discussed above for lengths. The samples shown 
in Fig. 13 are typical in showing good power-law form. 
The abrupt changes of slope at 10 and 25 m indicate the 
limit of resolution of the respective seismic data sets: 
below these values very few faults are detected. 

Constraint from well data is not possible as maximum 
displacements cannot be determined from cores. A 
displacement of 10 cm seen on a fracture in a well core 
may be near the centre of a small fault or near the tip of a 
much larger structure. 

The exponents shown in Fig. 13 are typical of seismic 
reflection data sets we have analysed (see Table 1 and 
Fig. 10b). The range over 11 data sets is from -0.96 to 
-1 .48 .  This is a tighter distribution than that for fault- 
trace lengths (Fig. 10a), possibly because the latter have 
greater errors caused by the resolution problems dis- 
cussed above. 

Published exponent values from field and seismic 
mapping show a similar range of -1 .2  to -1.5.  Scholz & 
Cowie (1990) give a cumulative frequency exponent of 
1.2 for maximum displacements on small Neogene faults 
in Japan. Marrett & AUmendinger (1992) infer values 
between 1.3 and 1.5 for the same Japanese faults and for 
fault traces mapped on Gulf of Mexico seismic reflection 
data. Villemin et al. (1995) report an average exponent 
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Fig. 14. Length-displacement cross-plot for a set of fault traces (data 
set A1 of Table 1, shown in Figs. 8 and 11). Note the significant 
variation in displacement at any given trace length. A linear relation- 
ship is shown (D - 0.03L) but the power law D - L H° fits the data 

equally well. 

of 1.35 for maximum offsets on fault traces in the 
Lorraine Coal Basin. 

Length-displacement relationship 

The relationship between fault length and fault dis- 
placement has been a matter of some controversy in 
recent years, in particular as to whether the relationship 
is linear (D = cL) or power-law (D = cL") (e.g. Cowie & 
Scholz 1992c, Gillespie et al. 1992, Hatton et al. 1994). 
Individual data sets usually exhibit considerable scatter 
and have a restricted range. As an example, in Fig. 14 we 
show a displacement-length cross-plot from a large data 
set (cumulative frequencies of lengths and maximum 
displacements are shown in Figs. 9 and 13, respectively). 
At any given length, there is almost an order-of- 
magnitude range of maximum displacement, and vice- 
versa. The fitted relationship shown on the figure is 
linear, with a constant of proportionality of 0.03; how- 
ever, a power law with exponent 1.10 fits the data 
equally well. Extrapolation of these relationships to 
smaller sizes is only justified over perhaps 1 order of 
magnitude: beyond that the uncertainties would be 
unacceptably large. 

An alternative approach to the length--displacement 
relationship is to compare the cumulative frequency 
exponents for each attribute. If length and maximum 
displacement are linearly related, the cumulative fre- 
quency exponents should be the same. If they are power- 
law related, the cumulative frequency exponents should 
be consistently unequal, and their ratio is a guide to the 
value of n in D = cL ~. Table 1 lists this ratio for the data 
sets discussed already, and the trace-length and dis- 
placement cumulative frequency exponents are cross- 
plotted in Fig. 10(c). For most data sets the ratio lies 
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Fig. 15. Comparison of two-dimensional (map) and one-dimensional 
(line) samples of displacement from the same mapped horizon in a 
North Sea field (data set D3 in Table I, from Yielding et al. 1992). Note 
that the map sample shows a steeper slope, as it should for the higher 
dimension of the sampling domain; however the difference is not 1 as 
would be expected if maximum displacement scaled with fault length 

(cf. Fig. 6). 

between 1.0 and 1.4; for none of them is it less than 1.0, 
and for two it is about 2.0. This observation suggests that 
a power-law length-displacement relationship (i.e. n > 
1.0) might be more appropriate than a linear relation- 
ship. However, such a relationship might not be 'univer- 
sal' over a wide range of scales (see discussion by Hatton 
et al. 1994). 

It is perhaps noteworthy that the two samples (F1, F2) 
with highest trace-length exponent also have low dis- 
placement exponents, and therefore plot separately 
from the other data sets on Fig. 10(c). It is not clear 
whether this is a result of the multiple extension episodes 
suffered by this area. 

Line (one-dimensional) sampling o f  displacements 

A line, or one-dimensional, sample can be obtained 
by making measurements along a traverse drawn on an 
horizon map or along a single horizon on a seismic 
section. In the latter case the measurements are usually 
restricted to displacements, since the length of the fault 
is not discernible from the cross-section alone. Displace- 
ments sampled in this way are relatively objective since 
they do not require the fault pattern to be interpreted in 
three dimensions. 

As shown with the fractal model, line samples of a set 
of faults must exhibit a lower fractal dimension than a 
map (two-dimensional) sample of the same faults. Fig- 
ure 15 shows line and map samples of displacements on 
faults cutting a Jurassic horizon in a North Sea field 
mapped with a detailed seismic survey. The sample of 
maximum displacements on the fault traces on the 
horizon map displays a power-law form, with slope 
-1.25. The line sample across the same horizon map 
gives a much lower slope, -0.7; the line sample obvi- 
ously crosses only a small subset of the total number of 
mapped faults, and will generally not encounter the 
maximum displacement on any fault trace that it crosses. 

The slope estimate is quite stable (+0.1) across the 
several hundred seismic lines that comprise the survey. 

It is noteworthy that the one- and two-dimensional 
samples shown in Fig. 15 have slopes that differ by an 
amount that is not exactly 1.0, in contrast to the fault 
lengths examined in the fractal model (Fig. 6). The same 
is true of the ranges of published exponents for many 
different data sets: -1 .0  to -1.5 for maximum displace- 
ments on traces (discussed above) and -0.5 to -1.0 for 
displacements on line samples (Childs et al. 1990, Yield- 
ing et al. 1992, Walsh et al. 1994). If maximum displace- 
ment were linearly proportional to fault length, then 
changing the sampling domain ought to change the slope 
by 1. A difference of slopes less than 1 implies D - L" 
with n > 1, in agreement with the analysis above of two- 
dimensional samples. 

Line sampling of displacements is particularly useful 
in that measurements at the seismic scale and at the well- 
core scale are relatively straightforward to compare. 
Average linear fault density (and population slope) can 
be obtained by combining many parallel seismic lines 
into one sample. Similarly, if fine-scale bedding is pres- 
ent, linear fault density and population slope can be 
readily measured from slabbed core. The seismic line 
sample is effectively horizontal and the well sample is 
(usually) vertical, and so a simple trigonometric correc- 
tion (relative to fault dip) must be applied before they 
can be compared. More detailed examples of line- 
sampling are given by Marrett & Allmendinger (1992), 
Walsh et al. (1992, 1994) and Needham et al. (1996). 

DISCUSSION 

The fault-population samples described above, and all 
others published in the literature, represent fault cuts 
seen on a slice or line through the faulted rock volume. 
Modem three-dimensional seismic reflection data offers 
the possibility of obtaining a true three-dimensional 
sample of a fault population, but to date no comprehen- 
sive analysis of this type has been attempted. In the 
meantime, inferences about the true population must be 
made from the lower dimensional samples. It is to be 
hoped that true three-dimensional samples will be avail- 
able in the future. 

The samples of fault-trace lengths on maps exhibit 
power-law exponents between - 1.1 and -2.0,  with the 
better-constrained data sets lying in the central part of 
this range. If these data represent isotropic fractal popu- 
lations, then the exponents for the population of faults in 
the volume would lie in the range -2.1 to -3.0. Faults 
that are large relative to the thickness of the seismogenic 
layer (ca 10 km) would not meet this criterion, since 
these structures are essentially cuts in a brittle sheet 
(Scholz 1990). Smaller faults, however, will in many 
cases be a true population of planes in a volume and 
therefore the above argument should be valid. The 
faults plotted in Fig. 7 are 'small' faults except for the 
few longest traces; all the data sets represent areas of 
Mesozoic crustal extension. Whilst we cannot define the 
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population distribution for the largest faults (which 
define the main tilted fault blocks), we can infer that the 
length populations for the 'small' faults appear to be in 
the range ~2.1 to -3.0.  A fractal dimension between 2 
and 3 seems intuitively reasonable in that faulting is a 
process that deforms a rock volume (i.e. three dimen- 
sions) by a set of planes (two-dimensional features), cf. 
King (1983). 

A power-law control on earthquake frequencies has 
been recognized for many decades (e.g. Gutenberg & 
Richter 1954). Cumulative frequency plots of earth- 
quake magnitudes are typically log-linear with a slope 
(b-value) of ca - 1  for 'small' earthquakes and ca - 1 . 5  

for 'large' earthquakes (Pacheco et al. 1992). Magnitude 
is a logarithmic measure of the size of an earthquake, 
and can be related to the logarithm of the seismic 
moment, which is the product of seismic slip, slip surface 
area and rigidity modulus. Aki (1981) showed that for 
'small' earthquakes the seismic moment scales with the 
cube of the length (L3), and therefore a b-value of - 1  
implies a power-law exponent of - 2  for the length 
distribution of the slip surfaces. For 'large' earthquakes 
the slip surfaces cut the seismogenic layer and seismic 
moment is proportional to L 2, the b-value of -1 .5  then 
also corresponds to a fault-length exponent of -2 .  Thus 
active slip surfaces show a self-similar length distribution 
over all scales: the cumulative frequency exponent is 
-2 .  This contrasts with the fault-length distributions 
discussed above, where the exponent is - 2  to - 3  (typi- 
cally ca -2.5).  

Why should active slip surfaces and inactive faults 
have different frequency distributions? There are two 
possible explanations. First, the recurrence interval for 
earthquake occurrence on a fault may be a function of 
fault size (Turcotte 1992). If the recurrence interval is 
longer for smaller faults, then small slip surfaces will be 
proportionally less well represented in the seismicity. 
Fractal dimensions of 2.5 for the fault population and 2.0 
for the seismicity, for example, would imply that recur- 
rence interval is proportional to 1/L °'5. This kind of 
behaviour is clearly n o t  observed in plate boundary 
areas (e.g. San Andreas) where the strain rate is rela- 
tively uniform and small segments slip more frequently 
than large ones (Scholz 1990). Intra-plate areas such as 
the Wasatch Fault Zone do show longer recurrence 
intervals on shorter distal segments (Cowie & Scholz 
1992b, using data from Machette et al. 1991). However 
this is probably just a reflection of strain-rate variations 
along the strike of the structure, and is not strong 
evidence that small faults in a deforming region have 
consistently longer recurrence intervals. 

The second explanation is that faults do not remain 
active throughout the deformation episode. The earth- 
quake population therefore represents the instan- 
taneous deformation on the fault network, which 
evolves over time. It is to be expected that the instan- 
taneous deformation would become progressively local- 
ized on through-going faults and many small faults 
become inactive (King 1983, Westaway 1992, Cowie et 

al. 1993); the 'geological' fault population however must 

obviously include all faults that have ever been active. 
This behaviour can be replicated by models of fault- 
population growth (Walsh & Watterson 1992). Anal- 
ogous behaviour is observed in diffusion-limited aggre- 
gation of 'viscous finger' structures in fluids, where the 
active growth zone has a lower fractal dimension than 
the entire structure (Feder 1988, pp. 96-99). A valuable 
way to test such growth models for faulting would be to 
examine fault populations in areas of active faulting, so 
that 'seismic' and 'geological' samples could be com- 
pared directly. 

CONCLUSIONS 

(i) As stated in previous studies, seismic reflection 
data and well cores are capable of providing a wealth of 
information about fault networks in the subsurface. 
High-quality seismic reflection data is volumetrically 
continuous and has a resolution of 20-30 m. Well cores 
can provide samples of fault displacements in the range 
1-100 mm. Core data place valuable constraints on the 
extrapolation of populations from the scale of seismic 
mapping. 

(ii) 'Fault' samples derived from an isotropic fractal 
fragmentation model can be used to illustrate many of 
the properties of real fault systems. They show that: 
- - the  exponent of cumulative frequency distributions is 

affected by the dimension of the sampling domain (the 
exponent for fault lengths changes by 1 when moving 
from volume to plane or from plane to line); 

---censoring limits the maximum size of fault that can be 
sampled, but faults that extend beyond the sample 
area should still be included; 

-- i t  is difficult to compare fault samples at different 
scales because those areas mapped in more detail are 
usually the most highly faulted. 
(iii) Fault-trace length distributions derived from seis- 

mic reflection and other data exhibit a power-law ex- 
ponent between -1.1 and -2.0,  with the better con- 
strained data sets lying at the centre of this range. 
Seismic resolution effects degrade the sample but can be 
corrected for if displacement gradients are used to 
extrapolate mapped fault tips to realistic lengths. 

(iv) Maximum displacements on fault traces usually 
provide a robust sample, controlled by a power-law 
exponent of about - 1.2 to - 1.5. 

(v) Conclusive data on the relationship between trace- 
length and maximum displacement are difficult to col- 
lect, but the available analyses suggest that the relation- 
ship is not linear in the size range covered by seismic 
reflection data. 

(vi) Displacements on line samples have power-law 
exponents in the range -0.5 to -1.0. 

(vii) The observed exponents for trace-length distri- 
butions (i.e. typically ca - 1.5) imply that 'small' faults in 
the rock volume have a population exponent of c a -  2.5. 
This is significantly different from the length distribution 
of active slip surfaces in earthquakes (exponent -2.0),  
which suggests that the instantaneous deformation on a 



146 G .  Y I E L D I N G ,  T .  N E E D H A M  a n d  H .  J O N E S  

faul t  p o p u l a t i o n  d o e s  n o t  a f fec t  all  t h e  faul t s .  T h e  

g e o l o g i c a l l y - o b s e r v e d  fau l t  p o p u l a t i o n  is t h e  t i m e -  

i n t e g r a t e d  resu l t  o f  m a n y  e p i s o d e s  o f  fau l t  sl ip a n d  fau l t  

g r o w t h .  
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